SALUD URBANA EN AMÉRICA LATINA

Association of education level with diabetes prevalence in Latin American cities and its modification by city social environment

Ariela Braverman-Bronstein, Philipp Hessel, Catalina González-Uribe, Maria F Kroker, Francisco Diez-Canseco, Brent Langellier, Diego I Lucumi, Lorena Rodríguez Osiac, Andrés Trotta, Ana V Diez Roux

ICUH July 6th 2021

Background

- Diabetes prevalence has doubled over the past 30 years.
- 75% of the cases occurring in low- and middle-income countries.
- 4th cause of death.
- More than 60% of the population in Latin America are overweight or obese.

Diabetes prevalence, 2017 Diabetes prevalence refers to the percentage of people ages 20-79 who have type 1 or type 2 diabetes.

our Worl in Data

Background

• Urban living has been linked to several factors associated to obesity and diabetes.

- Behavioral
- Social/demographic

- City development
- City enviorment

INEQUALITY

Aims

- To understand and document educational differences in diabetes prevalence in Latin American cities by gender:
 - Whether these inequities vary across countries and cities
 - The extent to which they are modified by city social environment.

- Harmonized survey data
 - Diabetes status
 - Education level
- Census data
 - Social Enviorment Index
- Eight countries, 232 cities, and 110,498 people.

Methods

Sequence of two-level models (individuals nested in cities)

 Exposure term

 Education level

 City SEl

 Country

 Interactions:

 Country*education

 Education*SEl

Sequence of two-level models (individuals nested in cities)

Sequence of two-level models (individuals nested in cities)

Exposure term	Model 1	Model 2
Education level		
City SEI		
Country		
Interactions:		
Country *education		
Education*SEI		

Sequence of two-level models (individuals nested in cities)

Exposure term	Model 1	Model 2	Model 3 (only male)
Education level			
City SEI			
Country			
Interactions:			
Country*education			
Education*SEI			

Methods

Sequence of two-level models (individuals nested in cities)

Exposure term	Model 1	Model 2	Model 3 (only male)	Model 4
Education level				
City SEI				
Country				
Interactions:				
Country*education				Male only
Education*SEI				

Age-adjusted percentage of people with diabetes by country and gender according to their individual education level

ORs of diabetes associated with individual-level education and city-SEI by sex

	Model 1	Model 2	Model 3
Individual and city characteristics	OR (95%CI)	OR (95%CI)	OR (95%CI)
Women (n=51,903)			
City-SEI	1.00 (0.95,1.06)	0.96 (0.91,1.02)	••
Education level	0.78 (0.73,0.83)	0.80 (0.75,0.85)	••
Random effects			
Intercept Variance (std. Error)	0.0798 (0.0197)	0.0364 (0.0135)	••
Education Slope variance (std.error)	0.0262 (0.0155)	0.0259 (0.0142)	••
Men (n= 37,246)			
City SEI	1.02 (0.96,1.09)	0.97 (0.92,1.03)	0.98 (0.92,1.05)
Education level	0.93 (0.87,1.00)	0.95 (0.89,1.02)	
Argentina, Brazil, Chile, Colombia, Mexico			0.92 (0.86,0.99)
Peru, Panama, El Salvador	••	• •	1.24 (1.04,1.49)
Random effects			
Intercept Variance (std. Error)	0.1004 (0.0240)	0.0201 (0.0117)	0.0210 (0.0117)
Education Slope variance (std.error)	0.0346 (0.0168)	0.0209 (0.0127)	0.0163 (0.0124)

Predicted probabilities of diabetes based on the multilevel logistic regression models to assess the effect modification of education level by city-Social Environment Index (SEI)

Summary of results

As education level increases, the odds of diabetes decrease regardless of city or country characteristics.

The association between education and diabetes is affected by country and city characteristics.

- In Argentina, Brazil, Colombia, Chile y México there is an inverse association between education level and diabetes.
- In Peru, Panama, and El Salvador there is a positive association between education level and diabetes.

This association was modified by city-SEI such that an inverse association emerged (or a positive association weakened) as the city-SEI improved.

Strengths and Limitations

- Harmonized data for 232 cities in 8 Latin American countries
- Use of city-specific information
- Multilevel models

- Self reported diabetes
- Different years for surveys and census

• Cross-sectional data

Conclusions

- Need for local policies
- City and country context matters when targeting diabetes
- It's important to reduce educational inequalities
- Reducing socioeconomic and gender inequalities is critical to reduce diabetes in Latin America.

Aknowledgments

- The SALURBAL project team members
- This study was funded by the Wellcome Trust.

SALUD URBANA EN AMÉRICA LATINA

Thank you!

Email: ab4257@drexel.edu Twitter: @aribravs

LEARN MORE AND CONTACT US

LACURBANHEALTH.ORG SALURBAL@DREXEL.EDU

> FOLLOW US @LACURBANHEALTH

🈏 f 🖸 in